Tamil Nadu Urban Sanitation Support Programme (TNUSSP) Trichy Phase - I

Key Findings March, 2018

TECHNICAL SUPPORT UNIT:

IN ASSOCIATION WITH:

TIRUCHIRAPPALLI

• Four administrative zones

Ponmalai, Srirangam, K. Abhishekapuram, Ariyamangalam

- Trichy has a population of approximately 10 lakh people living in 65 wards. Floating Population increases during festival seasons
- Area of 167 sq. km.
- 154 notified and 108 non-notified slums
- Fourth largest Municipal Corporation in Tamil Nadu
 - ✓ Headed by a Commissioner
 - ✓ 4 Assistant Commissioners
 - ✓ 1 City Health Officer
 - ✓ 29 Engineers belonging to JE / AEE / EE / CE cadre
 - 7 departments with Public Health & Engineering departments mainly dealing with sanitation

TRICHY – KEY INTERVENTIONS

- Demonstration of co-existence of networked systems and FSM
- Building on City's Strengths
- Large Infrastructure of Community and Public Toilets
- De-sludging vehicles meet certain standard
- 3. Presence of decanting stations

TRICHY – KEY INTERVENTIONS

- 1. Improving access to individual household toilets through Swachh Bharat Mission Urban (SBM-U)
- 2. Uyyakondan pollution study underway
- 3. Improvements to decanting stations
- 4. Proposal for improvements to STP
- 5. Design and construction of FSTP
- 6. Sustainable O & M models under preparation
- 7. Orientation and training of stakeholders: masons, desludging operators
- Stakeholder engagement: Working Group meetings , Sanitation and Hygiene Education (SHE) Teams in slums / low income areas etc.

- 1. Improving access to individual household toilets through Swachh Bharat Mission – Urban (SBM-U)
- 2. Enforcement Drives for conversion of insanitary toilets
- 3. Good Quality Well-maintained Community Toilets
 - 457 Community and Public Toilets including child-friendly toilets
 - Sanitation and Hygiene Education (SHE) Teams manage
 Community Toilets sustainably
 - Improvement for Containment Systems proposed

Uyyakondan canal pollution – Discharge points map

Uyyakondan canal pollution – Study Methodology

- Micro–catchment selection criteria Manageable size for study
- Field recce to map boundaries of micro-catchment tracing back from outfall point
 Field recce to map boundaries of micro-catchment tracing back from outfall
 - Finalization of micro-catchment in consultation with TCC

- Collection of primary information on micro- catchment Property tax, Water supply and drainage connection data
- Creating a GIS based HH level map

- HH and Establishment level Structured questionnaires and Water consumption pattern analysis
- Street and drain level Observations on public/private infrastructure

Detailed Situation Analysis

delineation

Prelimary

assessment and reconnaissance

Water sampling, Wastewater flow and quality analysis at various nodes of SWD segment

Uyyakondan canal pollution – Micro-catchment

Pilot demonstration : Non-invasive Geo-physical methods for characterizing OSS

To locate OSS, measure dimensions and estimate the sludge volume contained through the application of non-invasive geophysical techniques.

Primary objective is to identify the suitable technology that fits the field level conditions with broad parameters that can be expected / arrived at, based on such techniques.

First of its kind technology application to solve complex issue of locating & identifying structures, below the ground

Echo sounder & LiDAR: Among the three ranging sensors used, the laser sensor is most accurate due to the very low spread of its probing beam.

SP survey: Found effective for locating 'leakages'. However need to confirm these with water quality testing to confirm the same

- **Objective** is to design simple, cost-effective a non-invasive method/s to
- 1. Locate hidden septic tanks
- 2. Estimate the volume of sludge to be evacuated and
- 3. Identify and locate septic leakages
- Methods tested:
- 1. Electric resistivity imaging techniques
- 2. EM ground conductivity survey
- 3. Self Potential survey
- 4. Shallow seismic survey
- 5. Echo sounding of the septic tank
- 6. LiDAR (Light detection and ranging) sensors

Leakag	Sludge	Tank lateral	Tank	Remarks	
е	depth	dimensions	bottom		
	(cm)	(feet)	(feet)		
No	50	7' x 15'	13'	Dimensions of tank and	
				sludge top measured &	
				Tank Bottom identified	

3 dimensions + Sludge Top	2 dimensions + Sludge Top	Only Sludg e Top	Leakage
7	12	25	26
			10

From the 30 sites surveyed

Technology	Possibilitie	s (inceptio	on stage)	Actual performance in the field		e in the field	
	Location &	Leakage	Sludge	Location &	Leakage	Sludge Volume	
	Dimensions		Volume	Dimensions			
Resistivity	High	High	Low	High	High	Moderate	
Survey							
EM survey	High	High	Low	Not suitable	Not	Not Suitable	
					Suitable		
SP survey	Moderate	Moderate	NP	NP	High	NP	
Shallow	High	NP	NP	Moderate	NP	NP	
seismic							
Ultrasound	NP	NP	High	High	NP	Moderate [^]	
Lidar	High	NP	Moderate^	High^	NP	Moderate [^]	
System							
^ in conjunction with Ultrasound readings ^^ integrated probe							

Network

- 2 Main Pumping stations- 1 Decanting station (Anna Stadium)
- 24 Sub Pumping stations- 3 Decanting stations
- 26 Lifting stations
- Existing length 330 km of network

De-sludging operators in the city

- 32 operators; 41 vehicles licensed in the year 2017-18
- Tank capacities range from 4000 L to 10000 L; common size is 6000 L

	Per load price in Rupees			
Tank capacity	Within TCC limits / Periphery areas	Peripheral Areas (20 -30 Kms)		
4000 – 5000 L	1000 - 1200			
6000 L	1200 - 1500	1800 - 3000		
8000 – 10000 L	1600 - 2000			

Decanting station- Present State / Conditions

- No control or record of the origin of septage. For example, grease and industrial solvents can be discharged to the receiving pit with no controls
- 2. No mechanism or procedure for sampling and analysis of suspect loads
- 3. Bar screens & grit removal systems -either inoperable or not in use
- 4. Health and hygiene No proper hand wash facilities for drivers, and no guard rails on open pits.
- 5. Number of trucks is recorded but no volume
- 6. No monitoring during night hours

Improvements in Decanting Stations

Layout of existing Decanting station

- Infrastructure: a ramp/platform/collection tank at or below ground level to ensure the complete emptying of FS; Placement of screens at an angle for the ease of removal screenings, reducing the spacing of bars in screens provided
- O & Maintenance: Conditioning the grit removal motors to working status, Regular removal of screenings and grit
- Establish a system to monitor FS quality, monitor night hours operations
- Worker health and safety

Decanting station – Monitoring of truck visits at Anna stadium

Decanting station – Monitoring of truck visits at Pookollai

Pookollai Private operators
Pookollai TCC vehicle

Decanting station monitoring – Customer types served

	Ove	rall	Excluding Large Apt	
Customer Category	Number of loads	%	Number of loads	%
Household (Individual / Apartments)	468	78.66%	274	68.33%
Institutional (College, Schools , Hospital)	16	2.69%	16	3.99%
Commercial (Hotel / Lodge, Eateries, Marriage halls)	37	6.22%	37	9.23%
Community / Public Toilet	54	9.08%	54	13.47%
Industry / Factory	20	3.36%	20	4.99%
	595		401	

- Average of 25-30 loads per day by a Large apartment complex
- Majority of the Establishments
 and Institutions recorded more
 than one truck visit (*load*) to the
 decanting station which points
 to larger size containment
 structures

Areas served by Anna stadium decanting station

Areas served by Pookollai decanting station

Network and FSM:

- 25 wards fully covered
- 25 wards partially covered
- 15 wards un-covered
- Phased approach for networked system; FSM integrated into overall planning (under AMRUT)
- UGSS: Phase II & III : Expected time to complete is 5 7 years
 - Phase III, Phase IV areas FSM is planned

Assessment of Fecal Sludge and Sewage- Overview

SI. No.	Description		Value	Unit	Source	Non functional
1	Waste stabilization ponds as treatment technology.	Defunct cells	30	MLD	тсс	
	Effluent discharge to Koraiyar River	Operating cells	58			
2	Current inflow		45	MLD	Field estimation, estimated from pumping stations	PP-B PP-B PSNERI 15VEL 77-054 PP-B PSNERI 15VEL 77-054 PSNERI 15VEL 75VEL
3	Total capacity of ponds		577,716	m ³	Topographical Survey	PF-2 WATER BOTTOM LEVEL 79,181 WATER BOTTOM LEVEL 77,784
4	No. of Households cove sewerage network	ered by	45000	No.	тсс	BOUNDARY LINE
5	5 Amount of fecal sludge received (Max)		480	m ³ per day	Decanting station survey	
						Currently operating

Improvements in Sewage Treatment Plant - Panjappur

Capacity: 88 MLD | Current sewage flow :43 MLD | Technology: Waste Stabilisation ponds

- Infrastructure: requirements such as flow measurements, proper outlet structures for ponds to restrict the carryover of algae or solids.
- Infrastructural changes: Installation of air vac valves to removal of air block in the conveyance pipeline, retrofitting the old ponds.
- Operation: Regular desludging of ponds, scum and weed removal, regular screenings and grit removal (frequency should be increased).

Improvements in Sewage Treatment Plant - Panjappur

Capacity: 88 MLD | Current sewage flow :43 MLD | Technology: Waste Stabilisation ponds

- Maintenance: reconditioning the valves, screen and grit removal systems, field measurements and laboratory analysis, establish sludge management
- Performance Improvements and Capacity
 Enhancement: Installation of aerators/baffles to reduce short-circuiting, improve BOD and Nitrogen removal
- Record keeping and reporting: Establish daily/monthly and annual report keeping of observations, analysis and plant maintenance

Non Network: Fecal Sludge Treatment Plant

Design Capacity 32 m³/ day

Key units:

- Stabilisation Tank,
- Sludge Drying Bed,
- Integrated Settler and Anaerobic Filter
- Planted Gravel Filter
- Collection Tank

CAPEX: Rs. 3.8 Cr; OPEX : Rs. 20 Lakhs per annum

Clearances: TNPCB. LPA

Re-use Options

- Treated water used for plantation within site and buffer zone
- Co-composting of sludge, develop market for compost

Non Network: Fecal Sludge Treatment Plant Site Environmental Baseline

- 1. A baseline study quantifying and characterizing current environmental conditions is essential to assess the environmental impacts
- 2. Adherence to Consent to Establish conditions
 - Assessment of air, ground water and surface water quality.
- 3. To perform voluntary impact assessment.
 - · Baseline assessment of soil and noise quality
- 4. Environmental Baseline completed
 - Air and Noise: at three locations within site for two days per week for two weeks
 - Ground water and Surface water: at two locations (upstream and downstream)
 - Soil: Composite sampling done at site, considering likely locations for the sludge storage and spill

O & M MODEL FOR FSTP

CAPACITY BUILDING

Orientation / Training	Date	Participants covered
Masons Training on construction of On-site Systems – Batch I	November 2016	32 Masons
Masons Training on construction of On-site Systems – Batch II	June 2017	38 Masons + Training of Trainers

CAPACITY BUILDING

Orientation / Training	Date	Participants covered
Sludge Operator's Orientation Programme	August 2017	22 Operator Owners and Workers based out of Thiruverumbur
Domestic Exposure to Devanahalli for TCC Officials	August 2017	City Engineer, Executive Engineer and 4 Junior Engineers
Engineers training on FSM	December 2017	Seven Junior Engineers covered

BEHAVIOUR CHANGE AND COMMUNICATION

World Toilet Day 2017- KAKKAMAN Campaign Launch

World Toilet Day 2016- Signature Campaign

STAKEHOLDER ENGAGEMENT

AWASH committees

Zone	AWASH Committees setup	Wards covered
Srirangam	19	10
Ariyamangalam	23	13
Golden Rock	20	6
K-Abishekapuram	25	10
Total	87	39

Association for Water, Sanitation and Hygiene

- 20 member committee 10 men and 10 women
- Active since April 2017

Roles & Responsibilities

- Monitoring public infrastructure Water sources / Community toilets in their respective areas
- Reduce Open defecation in their neighborhood
- Promoting IHHL based on space availability
- Raise awareness about Sanitation and Hygiene
- Facilitate communication between ULB and area residents

STRENGTHS AND CHALLENGES

CT/ PT Quality

٠

Adequate treatment Adequate truck operators Adequate individual Toilets ٠ ٠ ٠ Vehicles in fairly good facility Adequate CT/ PT in place ٠ ٠ **Decanting stations in** condition ٠ **CT/PT** improvements ٠ place Most places accessible ٠ கழிவுதா ஊர்தி CONTAINMENT EMPTYING TRANSPORT TREATMENT REUSE/DISPOSAL Quality of containment **Open Dumping** Improvements in ٠ ٠ • structures for HH and Bulk Lack of PPE **Treatment Facilities** ٠ Generators **Re-use non-existent**

SUMMARY

- 1. Build on existing strengths
 - a. Community and Public toilets
 - b. Private truck operators
 - c. Decanting and co-treatment
- 2. Consider multiple options for sanitation planning
 - a. Co-existence of network and FSM
- 3. Reduction of untreated waste
 - a. Decentralized FSTP
- 4. Sustainable O & M Model
- 5. BCC, Capacity Building

City Wide Inclusive Sanitation (CWIS)

Trichy selected as CWIS city

City Wide Inclusive Sanitation (CWIS) City

Investments with cities that are intended to improve overall service delivery systems' ability to deliver sanitation services that are: financially sustainable, inclusive, and safe.

- 1. Inclusivity and a focus on the poor
- 2. System integration of service provision across technologies and along the full value chain of sanitation functions, from containment, conveyance, through complete treatment
- 3. Helping cities embrace new technologies
- 4. Taking risks and showcasing innovation
- 5. Rigorous measurement and learning
- 6. Flexibility and leveraged investments
- 7. Using convening power
- 8. Access to a strong and growing community of practice

CWIS Principles

Prioritise the **human right** of all to sanitation

 Develop inclusive strategies and programs to reach the most vulnerable, especially women and children

- Focus on informal settlements and account for land tenure insecurity
- Show political, technical and managerial leadership
- Allocate sufficient funds for investment and O&M
- Empower qualified staff
- Take calculated risks to shift the status quo: start addressing the challenges!

Deliver 'safe management' along the whole sanitation service chain

- Address complex problems rather than deliver fixed solutions
- Allow for a diversity of solutions and approaches, focusing on outcomes rather than technologies
- Focus on innovation, testing and evaluating approaches
- Facilitate progressive realization, building on what is already in place
 embrace incrementalism
- Recognize the trade-offs that exist along the sanitation service chain

CWIS Principles

Recognise that sanitation contributes to a **thriving urban economy**

- Integrate sanitation in urban planning and renewal
- Clean up city streets: remove unsightly pollution and bad odours
- Increase resource recovery and reuse
- Reform regulatory policies
- Recover water bodies for recreation and for fauna and flora

Commit to working in **partnership** to deliver citywide inclusive sanitation

- Embed sanitation within urban governance. Use an integrated approach: link to water supply, drainage, solid waste management, paving, affordable housing, urban development
- Leverage urban development, health, education and environmental budgets and savings thanks to improved sanitation
- Establish clear roles and responsibilities, with accountability and transparency

 Articulate and build demand and engage with civil society at the grass roots level

Thank You!